Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

نویسندگان

  • Caitlin E Piette
  • Madelyn A Baez-Santiago
  • Emily E Reid
  • Donald B Katz
  • Anan Moran
چکیده

Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paired-Pulse Inhibition and Disinhibition of the Dentate Gyrus Following Orexin Receptors Inactivation in the Basolateral Amygdala

The basolateral amygdala (BLA) has substantial effects on the neuronal transmission and synaptic plasticity processes through the dentate gyrus. Orexin neuropeptides play different roles in the sleep/wakefulness cycle, feeding, learning, and memory. The present study was conducted to investigate the function of the orexin receptors of the BLA in the hippocampal local interneuron circuits. For t...

متن کامل

Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles.

Emotional learning requires the coordinated action of neural populations in limbic and cortical networks. Here, we performed simultaneous extracellular recordings from gustatory cortical (GC) and basolateral amygdalar (BLA) neural ensembles as awake, behaving rats learned to dislike the taste of saccharin [via conditioned taste aversion (CTA)]. Learning-related changes in single-neuron sensory ...

متن کامل

Differential effects of inactivation of the right and left basolateral amygdala on spatial memory in place avoidance task in rats

There is strong evidence that two cerebral hemispheres are differentially involved in emotional memory and that amygdala is a key subcortical structure for emotional experience. The present research investigated the possible involvement of lateralization of basolateral amygdala (BLA) and central amygdala (CEA) in place avoidance memory. For this purpose, male Long-Evans rats (280-320 g) were im...

متن کامل

Distinct subtypes of basolateral amygdala taste neurons reflect palatability and reward.

The amygdala processes multiple, dissociable properties of sensory stimuli. Given its central location within a dense network of reciprocally connected regions, it is reasonable to expect that basolateral amygdala (BLA) neurons should produce a rich repertoire of dynamical responses to taste stimuli. Here, we examined single BLA neuron taste responses in awake rats and report the existence of t...

متن کامل

Effect of Protein Malnutrition on Efferent Projections of Amygdala to the Hippocampus

ABSTRACTIntroduction: Previous investigations have shown that protein malnutrition can alters the structure and function of some areas of hippocampal formation. We investigated the effect of protein malnutrition on amygdaloid projections to the CA1 hippocampal area. In this study we investigated level and pattern of distribution of efferent projections from amygdala to hippocampus in the rat by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 29  شماره 

صفحات  -

تاریخ انتشار 2012